O*-algebra - significado y definición. Qué es O*-algebra
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es O*-algebra - definición


O*-algebra         
In mathematics, an O*-algebra is an algebra of possibly unbounded operators defined on a dense subspace of a Hilbert space. The original examples were described by and , who studied some examples of O*-algebras, called Borchers algebras, arising from the Wightman axioms of quantum field theory.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.
Abstract algebra         
  • groups]]. For example, monoids are [[semigroup]]s with identity.
BRANCH OF MATHEMATICS STUDYING ALGEBRAIC STRUCTURES AND THEIR RELATIONS
Abstract Algebra; Modern algebra; AbstractAlgebra; Applications of abstract algebra; History of abstract algebra; Abstract algebraist
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field.

Wikipedia

O*-algebra
In mathematics, an O*-algebra is an algebra of possibly unbounded operators defined on a dense subspace of a Hilbert space. The original examples were described by and , who studied some examples of O*-algebras, called Borchers algebras, arising from the Wightman axioms of quantum field theory.